LE BIOMASSE: UNA RISORSA ENERGETICA RINNOVABILE E PROGRAMMABILE

Presentazione Centro Ricerche e relazione introduttiva

29 Maggio 2012

Sala Congressi FAST - Piazza Morandi, 2 - Milano

Prof. Ing. Franco Cotana

Direttore del Centro nazionale di Ricerca sulle Biomasse

Università degli Studi di Perugia

Collaborazione internazionale

CRB - Centro Nazionale di Ricerca sulle Biomasse

Collaborazione di ricerca (pellet da bagassa canna da zucchero)

CENBIO - CENTRO NACIONAL DE REFERÊNCIA EM BIOMASSA (Brazil)
Prof. Jose Roberto Moreira

F RUMdas AMÉRICAS

Brazil, Italy and Africa for sustainable biofuels production and the role of the State of São Paulo

Pacchetto Clima-Energia UE 20-20-20-10-30*

- riduzione del 20% le emissioni di gas a effetto serra
- riduzione del 20% dei consumi energetici finali
- aumentare almeno al 20% il consumo di fonti rinnovabili
- aumentare almeno il 10% energie rinnovabili nei trasporti (Elettricità da rinnovabili e Biocarburanti)

- aumentare almeno al 30% la produzione di bioplastiche e chemicals da biomasse (Bioraffineria integrata)

* Biobased industries objectives 2030

Pacchetto Clima-Energia UE 20 20 20 10

Table 3.1 Contribution of Renewable Energy Technologies to final energy consumption (Mtoe)

			2015	2020		2025		2030	
	2005	2010		Baseline	Advanced	Baseline	Advanced	Baseline	Advanced
Wind	6	14,7	25,8	42,5	55,1	64,2	75	86	95
Hydro *	29	29,8	30,6	31,8	34	32,5	33,9	33	34,2
PV	0,2	1,7	4,5	7,2	11,5	21,9	27,5	36,6	44
Bioenergy	60	82,2	103,8	134,5	145	184,5	200,5	236	255
Geothermal	1,1	2,4	4,1	7,5	17,5	17,6	30,1	28,4	42
Solar Thermal	0,7	1,4	3	6,3	10,5	37	46	68	81
CSP	0	0,09	0,8	1,7	2,2	5	8,5	8,4	15
Ocean	0,09	0,09	0,8	0,5	0,7	1,3	3,4	2	6
Total RES	96	132,3	173,4	232	276,3	364	424,9	498,4	572,2
Total share of RES (%)	8,5%	11,3%	14,3%	19-20%	23-24%	30%	35%	41-42%	47-48%

Source: EREC, "45% by 2030"

Italia: Biomasse circa 45% del totale FER nel 2010

^{*}excluding pumped storage

STIMA DEL CONTRIBUTO IT POTENZIALE SOSTENIBILE DELL'ENERGIA DA BIOMASSE (2011)

Biomassa da boschi (esclusa legna da ardere)	17 Mt
Biomasse residuali agricole (paglia)	10,5 Mt
Biomasse residuali agro-industriali	0,85 Mt
Biomasse residuali arboree (potature)	3,2
Coltivazioni energetiche set-aside (800.000 ha)	
Coltivazioni in Terreni Marginali collinari (3Mha)	12 Mt 24Mt
TOTALE BIOMASSE ITALIA	67,55 Mt
TOTALE DEIEZIONI ANIMALI ITALIA	132 Mt

= 20 Mtep in termini di energia primaria

BIORAFFINERIA INTEGRATA

FASI DI PRODUZIONE DI E.E., TERMICA E DI BIOCARBURANTI DA BIOMASSE

1. Produzione di biomasse:

agroforestali; vergini; residuali/sottoprodotti; rifiuti

2. Trasformazione della biomassa in:

biocarburanti; biocombustibili; biochemicals

3. Logistica delle biomasse:

raccolta; trasporto; stoccaggio; essiccazione

4. Usi finali dell'energia:

termici; cogenerazione/trigenerazione; miscelazione biocarburanti con carburanti; bioplastiche; cosmesi; biomedicina;

Produzione di biomasse Campi sperimentali del CRB

ica			
12-13			
10-15			
150-250			
15-16			
5-10			
2-2,5			
0,3-1,7			
otto			
1,6-1,8			
0,4-0,6			
60% acido linoleico 25% da acido oleico 11% da acido palmitico 4% da acido stearico			

PROGETTO EUROPEO BIOCARD

I laboratori del Centro di Ricerca sulle Biomasse

Facoltà di Ingegneria dell'Università degli Studi di Perugia

Laboratori del Centro di Ricerca sulle Biomasse

Camera Climatica

Mazzali mod. C330G55

Sample drying

Mill RESTCH SM 2000

2.

Sample reduction

5.

Analizzatore Termogravimetrico

Proximate analysis

Elementary analizer LECO Truspec CHN

Ultimate analysis

Calorimetro LECO AC-350

Definitione del Potere Calorifico

Trasformazione della biomassa

Impianti dimostrativi C.R.B.

- 1. Lungarotti: valorizzazione energetica delle potature di vite.
- 2. Sant'Angelo di Celle: impianto batch a biocelle per la produzione del biogas da reflui zootecnici.
- 3. Sant'Apollinare: impianto di trigenerazione ad olio vegetale
- 4. San Venanzo: impianto termico di gassificazione a pollina
- 5. CRB lab: impianto di produzione di biodiesel di seconda generazione con tecnologia Fischer-Tropsch
- 6. CRB lab: impianto di produzione di bioetanolo di seconda generazione
- 7. CRB lab: Veicoli ad emissioni zero per i servizi postali con ciclo integrato di biocarburanti
- 8. CRB lab: Pellet di gas idrati

1. PROGETTO ERAASPV Lungarotti: energia rinnovabile per le aziende agricole derivante da scarti di potature dei vigneti.

ENTE FINANZIATORE: MIPAAF

AZIENDA SELEZIONATA: CANTINE GIORGIO LUNGAROTTI

FILIERA ENERGETICA DI RECUPERO DEGLI SCARTI DI POTATURA

1-Rotoimballatura

3-Cippatura e stoccaggio

2-Trasporto e stoccaggio

4-Conversione energetica

Caratteristiche caldaia a biomasse

Combustibile	Cippato di legno
Potenza al bruciatore	600 kW
Potenza utile	400 kW(compromesso consumo/disponibilità)
Rendimento termico	66%
Tipo di focolare	Griglia mobile
Unità recupero termico	Scambiatore fumi/olio diatermico
Fluido termovettore	Olio diatermico fino a 300°C

CONVERSIONE ENERGETICA DELLA BIOMASSA

150 ton s.s./anno - 720 MWh/anno

ACQUA CALDA 85°C (riscaldamento locali e produzione acqua calda sanitaria)

ACQUA REFRIGERATA
-10°C
(Processo di
vinificazione)

ACQUA FREDDA 7°C (condizionamento estivo dei locali) VAPORE ACQUA SURR. (sterilizzazione delle bottiglie) 2. Sant'Angelo di Celle: impianto batch a biocelle per la produzione del biogas da reflui zootecnici.

IMPIANTO A BIOCELLE

Soffiante

Deumidificatore

4. Progetto ENERPOLL: impianto termico di gassificazione a pollina

IMPIANTO A POLLINA a S. VENANZO (TR)

IMPIANTO A POLLINA a S. VENANZO (TR)

5. Progetto BIODIE2: impianto di produzione di biodiesel di seconda generazione con tecnologia gassificazione e Fischer-Tropsch

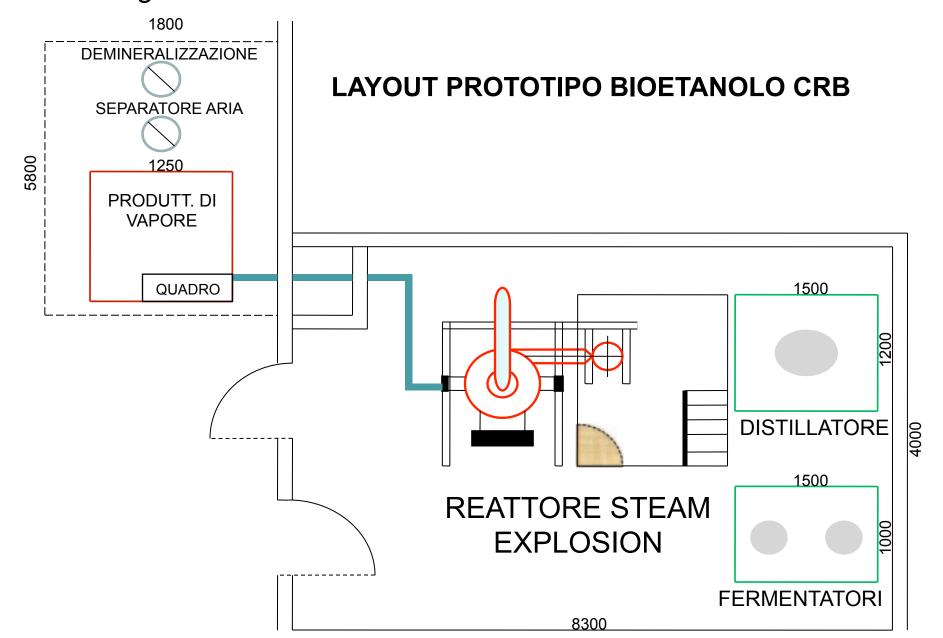
Serbatoio

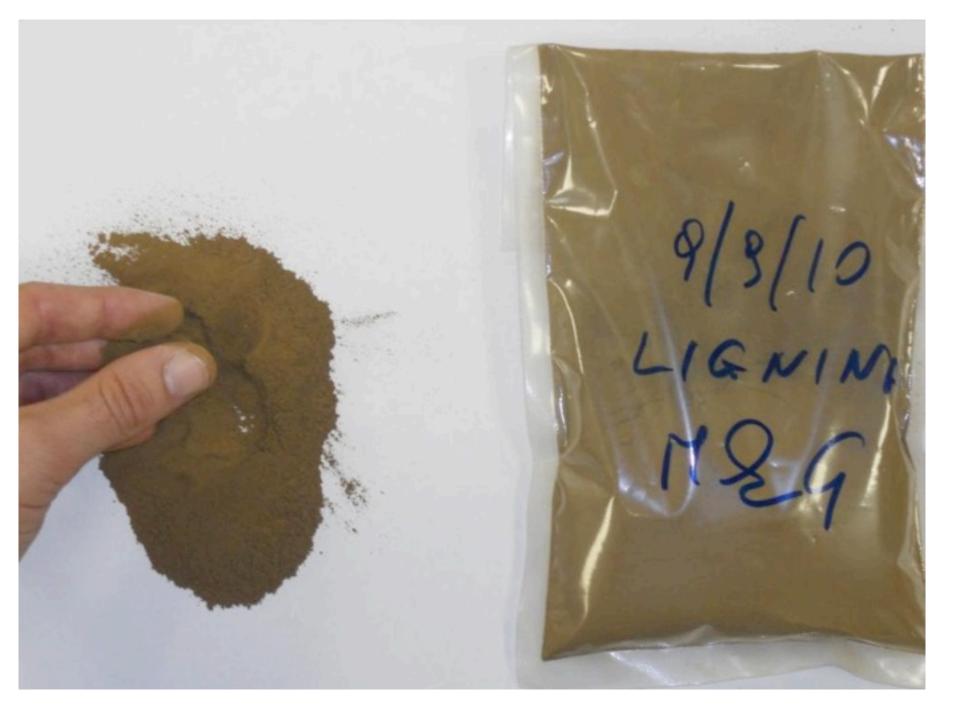
Biodiesel

Reattore FT

Riscaldamento Syngas

BIODIE2 - Prototipo Fischer Tropsch



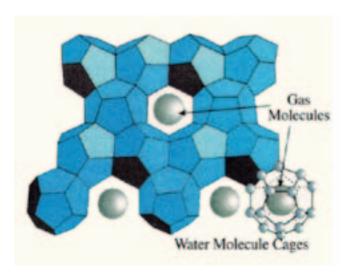

Particolare reattore FT

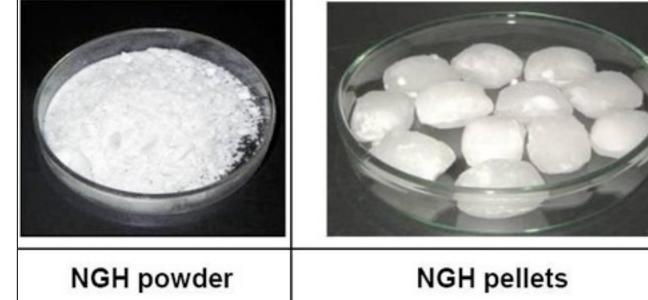
Risultati preliminari

6. PROGETTO BIOETA2: impianto di produzione di bioetanolo di seconda generazione

7. PROGETTO POSTALZEV: Veicoli ad emissioni zero per i servizi postali con ciclo integrato di biocarburanti

CONFIGURAZIONI TESTATE SU FREE DUCK

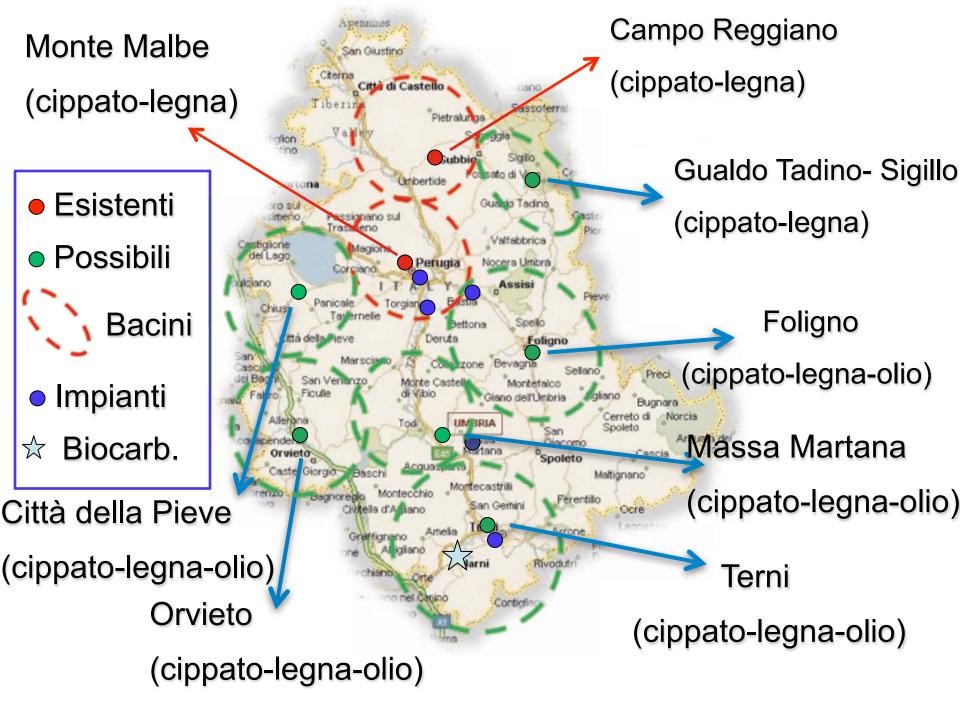

Ricarica della batteria mediante motore stazionario a bioetanolo

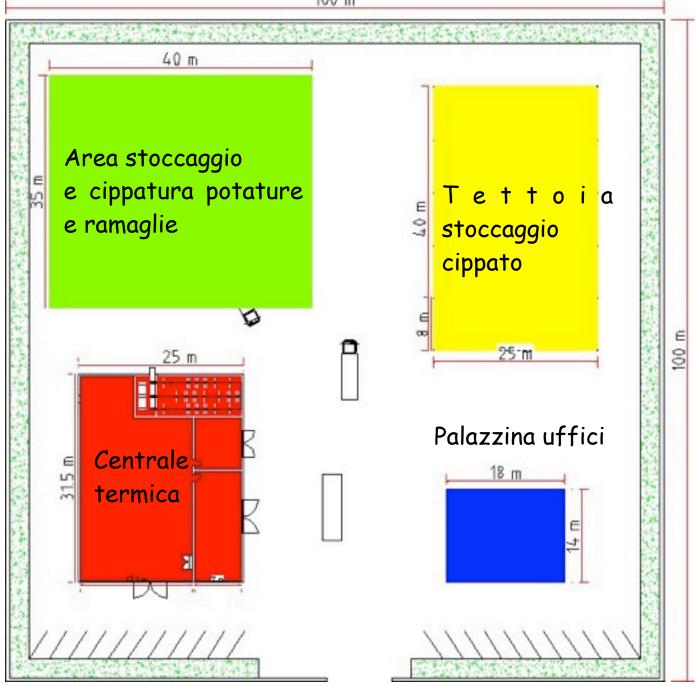


Ricarica della batteria mediante motore interno a bioetanolo

8. PELLET DI GAS IDRATI

Logistica delle biomasse





PROGETTO EUROPEO BEN

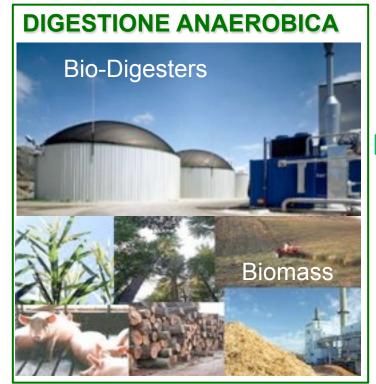
Biomass energy register for sustainable site development for European Regions

Usi finali dell'energia

USI TERMICI

1. Pellets

2. Cippato

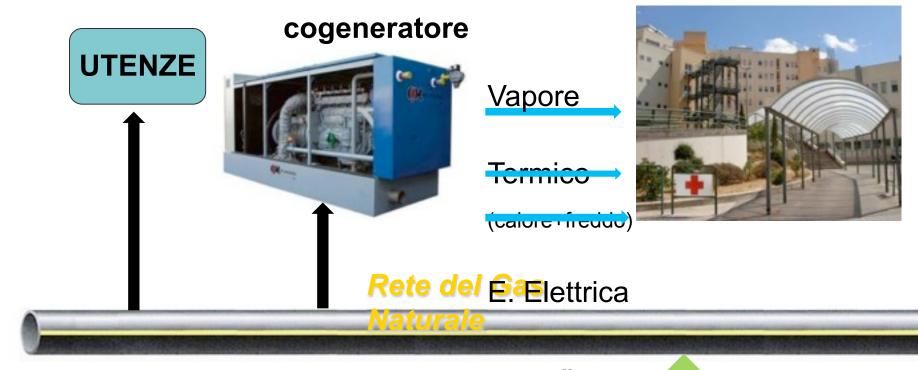


3. Brik di legna

4. Legna

Dal BIOGAS al BIOMETANO

Biogas

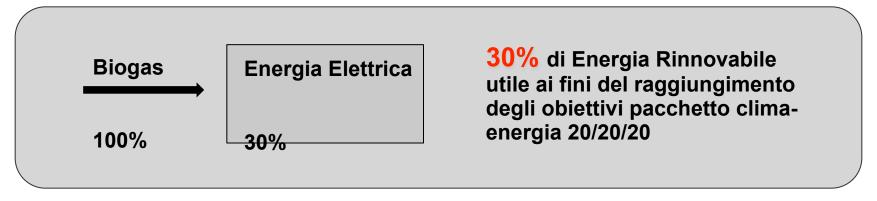


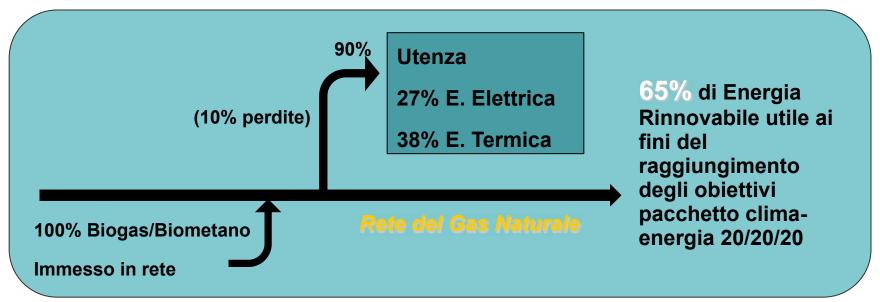
Source: Axiom

BIO-METANO ED EFFICIENZA ENERGETICA:

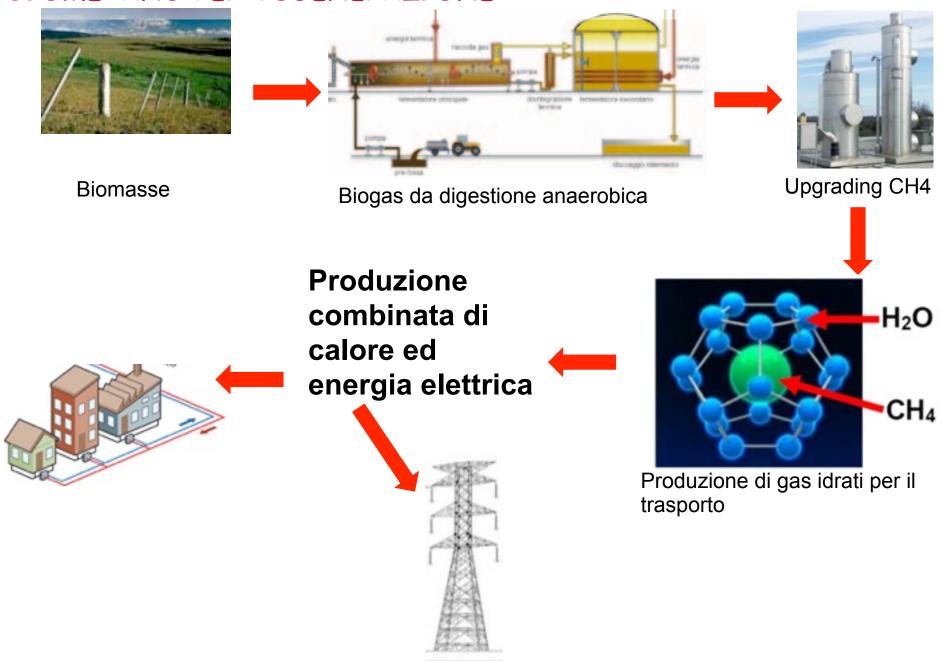
COGENERAZIONE e TRIGENERAZIONE REMOTA

Biogas



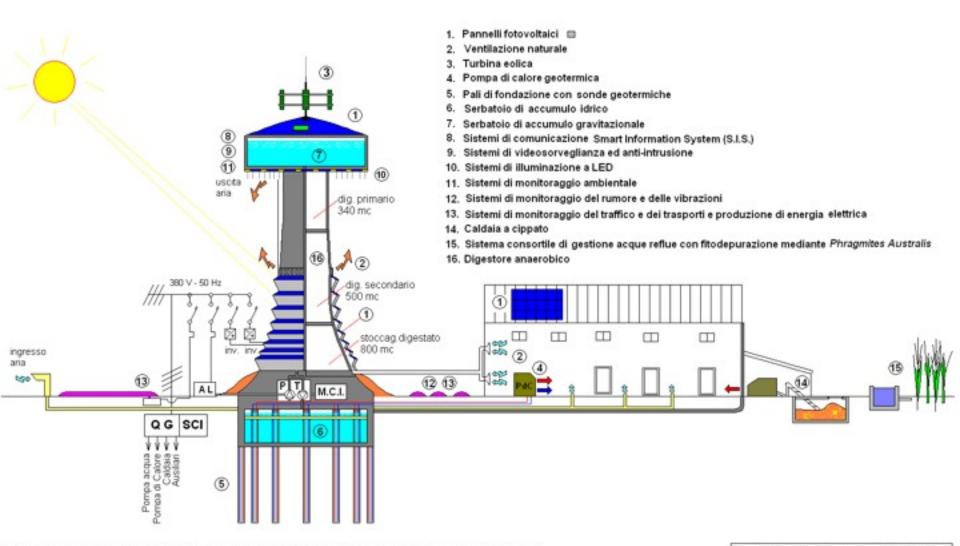

Bio-CH_₄

EFFICIENZA ENERGETICA:


COGENERAZIONE e TRIGENERAZIONE REMOTA

EFFICIENZA POLIGENERAZIONE

BIOMETANO PER COGENERAZIONE


Smart City: smart TEAM

Problematiche per lo sviluppo delle Energie Rinnovabili

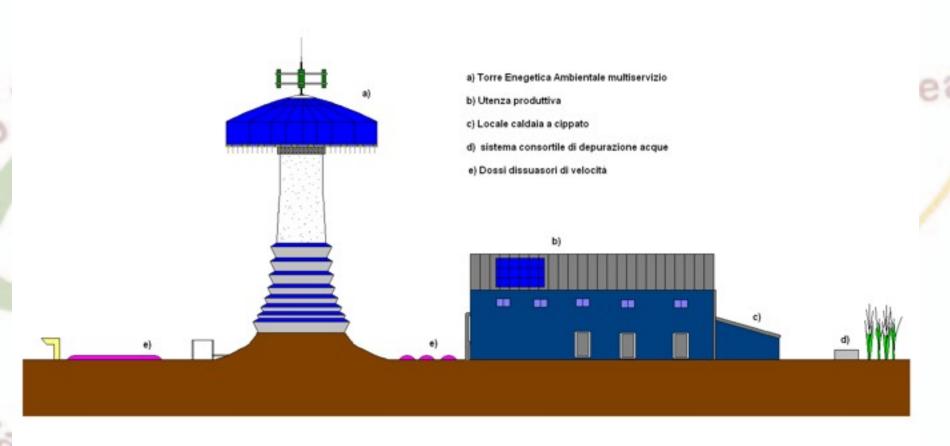
- -Occupazione del suolo
- -Non programmabilità di eolico e fotovoltaico
- -Bassa densità energetica per unità abitativa
- -Accettabilità sociale
- -Generazione distribuita

Smart T.E.A.M.

Torre Energetica Ambientale Multifunzionale

Caratteristiche Smart T.E.A.M. Torre Energetica Ambientale Multifunzionale

CARATTERISTICHE


- -Altezza torre: 35 m circa
- -Capacità bacino interrato: 5.000 mc
- -Capacità serbatoio gravitazionale: 2.500 mc
- -Energia gravitazionale immagazzinata: 100 kWhe

ass Re

- -Potenza elettrica Fotovoltaico: 190 kWp
- -Potenza elettrica biogas: 300 kWe
- -Potenza elettrica eolico: 30 kWe
- -Potenza elettrica Idraulica: 40 kWe
- -Pompa di calore fotovoltaica: 1200 kWt
- -Assorbimento rete: 190 kWe
- -Capacità termica bacino interrato: 2 MWht

T.E.A.M.

Torre Energetica Ambientale Multifunzionale

Ipotesi di Smart TEAM in ambito industriale/produttivo

Grazie per l'attenzione

Prof. Ing. Franco Cotana cotana@crbnet.it