


# Da rifiuti a risorse: un progetto per Expo

Silvana Castelli, Sergio Mapelli, Cesare Sala, Samuele Segato

# Master in Energia e Bioprodotti da Biomassa



# Gli scarti agro-alimentari



#### In Italia:

E' stato stimato uno spreco settimanale medio di circa 213 grammi di cibo gettato - perché considerato non più edibile - al costo di 7,06 euro settimanali a famiglia.

Rapporto 2013 sullo spreco domestico realizzato da Knowledge for EXPO, con l'apporto dell'Osservatorio nazionale sugli sprechi Waste Watcher



#### Da rifiuti a Risorse







Rifiuti come risorsa

Ridurre i quantitativi di rifiuti prodotti

# **Energia da Biomassa**

# Come si può alimentare un impianto di DA della Potenza 200 kW – 1.400.000 kWh – consumo di oltre 500 famiglie

#### Coltura dedicata

| Materie prime in | Tonnellate annue | % Sostanza | % Sostanza | Produzione                       | ha         |
|------------------|------------------|------------|------------|----------------------------------|------------|
| ingresso         | prodotto         | Secca      | Organica   | specifica (Nm3/t <sub>Sv</sub> ) | utilizzati |
| Insilato di mais | 3500             | 32,5       | 94,5       | 640                              | 70         |

#### Sottoprodotto

| Materie prime in     | Tonnellate     | % Sostanza | % Sostanza | Produzione                       | Capi       |
|----------------------|----------------|------------|------------|----------------------------------|------------|
| ingresso             | annue prodotto | Secca      | Organica   | specifica (Nm3/t <sub>Sv</sub> ) | produttivi |
| Letame bovino adulto | 11000          | 45         | 60         | 240                              | 846        |

#### Rifiuto

| Materie prime in | Tonnellate     | % Sostanza | % Sostanza | Produzione                       | Abitanti  |
|------------------|----------------|------------|------------|----------------------------------|-----------|
| ingresso         | annue prodotto | Secca      | Organica   | specifica (Nm3/t <sub>Sv</sub> ) | necessari |
| Forsu            | 5000           | 23         | 86,5       | 700                              | 50000     |

#### Valorizzazione di rifiuti in una zona con carenze idriche

### Analisi tecnico economica

Comprensorio 350.000
90kg/abitante pro-capite
Inerti presenti nella Forsu > 15%
Zona con scarsità di acqua

#### Dati tecnici

| Rendimento motore     | 39%       |
|-----------------------|-----------|
| Ore annue lavoro      | 8.000     |
| Potenza impianto (kW) | 999       |
| kWh annui prodotti    | 7.992.000 |
| Autoconsumi reali     | 7%        |

| Forsu in ingresso (t)   | 42.353,5 |
|-------------------------|----------|
| Percolato 10% (t)       | 4.235    |
| Biogas (t)              | 4.854    |
| Digestato in uscita (t) | 33.265   |

# Parametri economici valutati

| <b>Costi</b> (€)000      | %     |      |
|--------------------------|-------|------|
| Costo annuale manodopera | 240   | 14   |
| Assicurazione e service  | 80    | 4.7  |
| Smaltimento percolato    | 169   | 9.9  |
| Spesa gasolio            | 266   | 15.5 |
| Spesa totale elettricità | 159   | 9.3  |
| Quota ammortamento       | 800   | 46.6 |
| Costi totali             | 1.734 |      |

| <b>Ricavi</b> (€)000                         | %     |      |
|----------------------------------------------|-------|------|
| Ricavo totale FORSU                          | 2.710 | 76.2 |
| Ricavo totale verde                          | 254   | 7.1  |
| Ricavo vendita di energia<br>Senza incentivo | 594   | 16.7 |
| Ricavi totali                                | 3.559 |      |

Risultato Industriale: 1.820.000 €/anno

Risultato/investimento=11,5%

# Valorizzazione di rifiuti e fanghi di depurazione di una valle pedemontana lombarda

Forsu potenziale 6.500 t/a quantità intercettata 1.460 t/a qualità (92,5 % di organico) destinazione compostaggio a 123 km costi conferimento e trasporto 85€/t

**Fanghi** 2.783 t/a estratti dai depuratori , pressati, trasportati ad una piattaforma per la bio-essiccazione destinazione termovalorizzatore a 140 km costi conferimento e trasporto 95 €/t

# Parametri tecnici

| Materie prime in ingresso | Tonnellate annue | Sostanza<br>Secca % t.q. | Sostanza Organica % s.s. | Resa biogas<br>(Nm <sup>3</sup> /t <sub>SO</sub> ) |
|---------------------------|------------------|--------------------------|--------------------------|----------------------------------------------------|
| Forsu                     | 1.350,5          | 26,6                     | 96,5                     | 550                                                |
| Fango essiccato           | 2.783            | 20                       | 67,7                     | 217                                                |
| Acqua da depurare         | 7.227            | 2,5                      | 67,7                     | 217                                                |

| Rendimento termico                    | 48%  |
|---------------------------------------|------|
| Rendimento elettrico                  | 37%  |
| Ore annue lavoro                      | 7200 |
| Potenza termica (kW <sub>t</sub> )    | 128  |
| Potenza elettrica (kW <sub>el</sub> ) | 100  |

# Parametri tecnici

| t di digestato in uscita | 11.021 |
|--------------------------|--------|
| t S.S nel digestato      | 757    |
| % S.S. nel digestato     | 6,87   |

|                                                       | In peso | In S.S. |
|-------------------------------------------------------|---------|---------|
| Rendimento separatore elicoidale nel separato solido* | 18%     | 60%     |

| t di acqua evaporabili | 389,0 |
|------------------------|-------|
| fanghi disidratati (t) | 1595  |
| % S.S.                 | 28,5  |

|                  | t tal quale | t di S.S. | % ss |
|------------------|-------------|-----------|------|
| Separato solido  | 1983,8      | 454,2     | 23%  |
| Separato liquido | 9037,2      | 302,8     | 3,4% |

Depuratore che concentra i fanghi al 20% di S.S.

| t S.S. |         | Fanghi da    |  |  |
|--------|---------|--------------|--|--|
|        | /º J.J. | trattare (t) |  |  |
| 302,8  | 20%     | 1514,0       |  |  |

\*Fonte CRPA

# Dati economici preliminari

#### Situazione iniziale

|                   | t      | costo Unitario di<br>trasporto e smaltimento |       | Costo<br>smaltimento |  |
|-------------------|--------|----------------------------------------------|-------|----------------------|--|
| Forsu             | 1350,5 | €                                            | 85,00 | € 114.792,50         |  |
| Fango Disidratato | 2942   | €                                            | 95,00 | € 279.490,00         |  |
| Totale            | 4292,5 |                                              |       | € 394.282,50         |  |

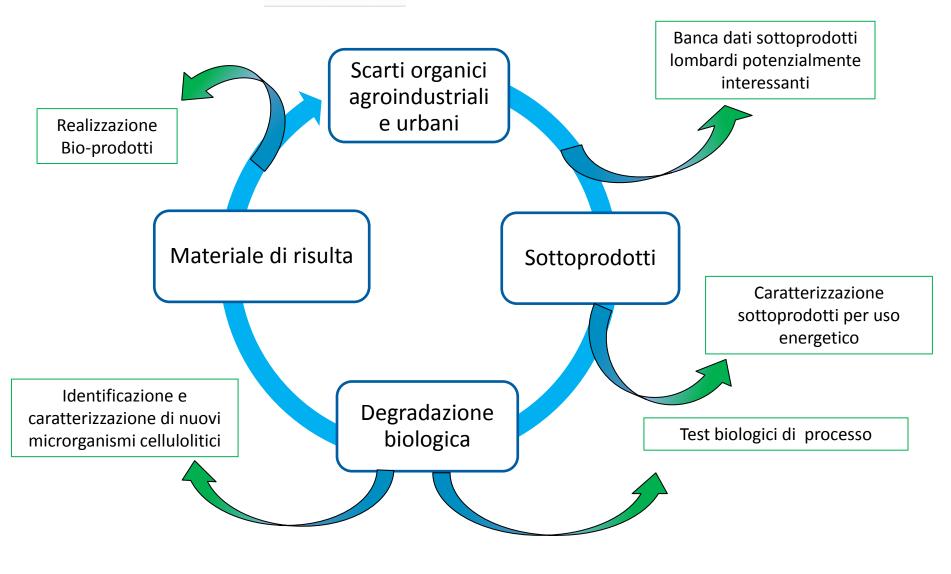
# Situazione post D.A e trattamento

| Fanghi da trattare dal sep. Solido (t)  | 1595    |
|-----------------------------------------|---------|
| Fanghi da trattare dal sep. Liquido (t) | 1514    |
| Costo unitario di smaltimento (€/t)     | 95      |
| Costi smaltimento(€)                    | 295.355 |
| Vendita energia con incentivo (€)       | 191.149 |
| Costo di esercizio (€)                  | 104.205 |

#### 290.076 €/a di risparmio

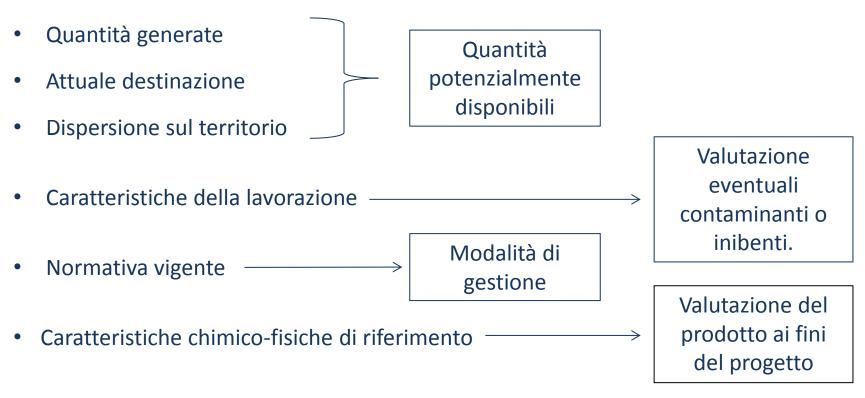
# Valutazione emissioni di CO<sub>2</sub>

#### Situazione iniziale

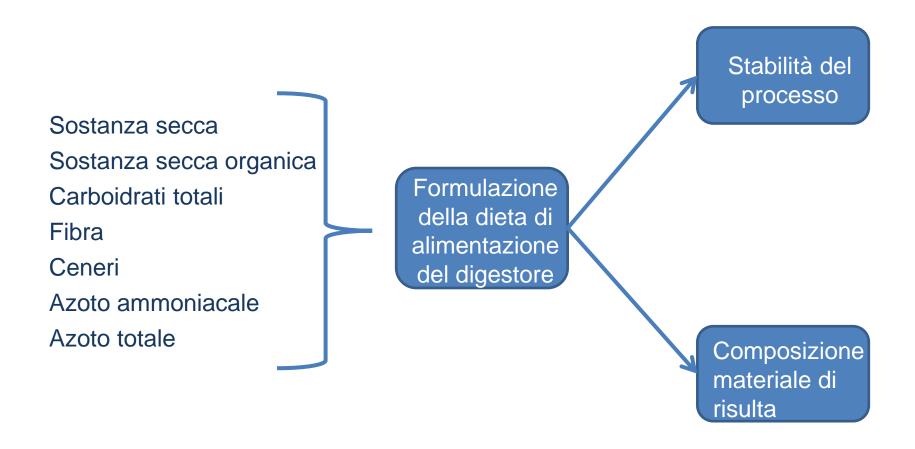

|                      | t/gg | gg di<br>stoccaggio<br>massimi | Carico a viaggio (t) | N°<br>viaggi<br>annui | Km dal punto di raccolta di Cedrasco alla destinazione | Emissioni di<br>CO <sub>2</sub> a Km<br>(Kg/km) | kg<br>emessi<br>all'anno |
|----------------------|------|--------------------------------|----------------------|-----------------------|--------------------------------------------------------|-------------------------------------------------|--------------------------|
| Forsu                | 3,7  | 5                              | 18,5                 | 2x(73)                | 123                                                    | 0,75                                            | 13.468                   |
| Fanghi pre-essiccati | 8,1  | Stabilizzati                   | 20                   | 2x(147)               | 140                                                    | 0,75                                            | 30.892                   |
| <u> </u>             |      |                                |                      |                       | ·                                                      |                                                 | 44.200                   |

#### Situazione post D.A e trattamento

|                  | t/gg | gg di<br>stoccaggio<br>massimi | Carico a viaggio (t) | N° viaggi<br>annui | Km dal punto di raccolta di Cedrasco alla destinazione | Produzione di<br>CO₂ a Km | kg<br>emessi<br>all'anno |
|------------------|------|--------------------------------|----------------------|--------------------|--------------------------------------------------------|---------------------------|--------------------------|
| Fanghi in uscita | 8,5  | Stabilizzati                   | 20                   | 2x(155)            | 140                                                    | 0,75                      | 32.642                   |


11.718 Kg/a di CO<sub>2</sub> non emessi






# Indagine sui sottoprodotti nel sistema agro-forestale Lombardo

Valutazione dei sottoprodotti da destinare ad uso energetico tramite degradazione biologica:



# Analisi di caratterizzazione dei sottoprodotti.



Identificare un pre-trattamento biologico per aumentare l'accessibilità e la degradazione della biomassa ligno-cellulosica.

Identificazione e caratterizzazione di nuovi microrganismi cellulolitici

# Identificazione di microrganismi cellulolitici (prove preliminari).

## Scelta delle comunità di microrganismi da selezionare

Comunità microbiche provenienti da habitat naturali

Consorzi microbici di biomasse in fase di digestione

## Proposte per padiglione Italia Expo'15

# Il messaggio di EXPO 2015: Nutrire il Pianeta, Energia per la Vita

Presentazione delle filiere avanzate per il riciclaggio, recupero, valorizzazione dello scarto e del rifiuto organico derivante dalle filiere alimentari

- esperienze operative con tecnologie Italiane (modelli di raccolta, sistemi impiantistici DA e compostaggio, codigestione, valorizzazione scarti agro-alimentari)
- Formazione e informazione/esperienze organizzative
- nuove tecnologie bioprodotti da biomassa residuali -attività di ricerca e sviluppo tecnologico di imprese e istituti di ricerca

## Proposte per padiglione Italia Expo'15

Presentazione delle filiere avanzate per il riciclaggio e recupero dello scarto e del rifiuto organico

- Esposizione nel padiglione Italia (esperienze, tecnologie, ricerca)
- Visite a impianti lombardi di DA e compostaggio
- Laboratori dimostrativi e didattici
- Impianto dimostrativo di DA

# Proposte per padiglione Italia Expo'15

- Soggetti
- Imprese / Consorzi di Comuni che gestiscono filiere di raccolta e valorizzazione
- Imprese impiantiste
- Istituti di ricerca / Università

# Grazie per l'attenzione